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NEWSLETTER OF THE INTERNATIONAL LIQUID CRYSTAL SOCIETY 

ISSN: 135&314X 

Liquid Crystals Today 
Members of the International Liquid Crystal 
Society and other readers wil l  be aware that 
Liquid Crystals Today has been published as a 
joint venture with Taylor G Francis Pub- 
lishers since the beginning of 1995. This 
arrangement has allowed the ILCS to keep 
membership fees to a minimum, while 
maintaining a regular high quality news 
letter for its members. The initial agreement 
with Taylor G Francis was for a period of 5 
years, which comes to an end in 1999. and it 
is appropriate to begin a review of Liquid 
Crystals Today and its function within the 
ILCS and the wider liquid crystal com- 
munity. 

Under the ByLaws of the ILCS. the Society 
does not publish original scientific research, 
but over the years since its inception in 
1990. Liquid Crysfals Today has published 
many review and feature articles of high 
quality, as well as news items and book 
reviews. Viewed as a scientific publication in 
the liquid crystal arena, Liquid Crysfals Today 
is of course small, having a present annual 
size of 64 pages. However in terms of 
circulation and readership, Liquid Crystals 
Today is significant. Circulation is  1000- 
2000. and because of its modest size, most 
issues wil l  be read cover to cover. If liquid 
crystal scientists wish to communicate their 
ideas to a wide audience, who will actually 
read their articles, then Liquid Cryslals Today 
provides a highly effective vehicle. Effective 
and widespread communication should be 
the objective of all scientists. but in the new 
world order the scientific community is less 
confident, and is now obsessed by assess- 
ment. Authors will only publish material in 
iournals that make a maximal contribution 
to the assessment, often through the 
citation index. Liquid Crysfals Today does not 
have a citation rating. although perhaps it 

should, but its great strength is that its 
articles are actually read, and many are kept 
for reference. 

So the questions to be addressed by the 
Editorial Board of Liquid Cryslals Today and 
the Board of Directors of the ILCS are 'Does 
Liquid Crysfals Today have a future?', and if so 
'What form wil l  it take after the year 2000?' 
Of course these questions have to be 
answered both in the contexts of develop- 
ments in publishing, and the future of liquid 
crystal science generally. The review will 
take place over the coming months, 
culminating in a discussion paper at the 
next ILCC in Strasbourg 1998. If  the readers 
have any views on the future of Liquid Cryslals 
Today, then they are invited to submit them 
to the editor. 

This issue of Liquid Crysfals Today is the 
last for 1997. and the Editor wishes all 
readers the best of liquid crystal activities 
for next year as the millennium approaches. 
Perhaps next year is the time to reorder our 
scientific priorities, and if  you seek wide 
circulation and informed readership for your 
liquid crystal article, why not send it to 
Liquid Crystals Today. Articles are of course 
refereed before publication by members of 
the Editorial Board or other distinguished 
scientists 
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ispersions of a small amount of D polymer in a liquid crystal matrix 
(polymer-stabilized liquid crystals, or 
PSLCs) [1-3] have shown considerable 
promise for liquid crystal display 
applications [4-61, in large part because 
of the polymer networks that form 
[7-101. These networks have high surface 
areas and consequently tend to stabilize 
liquid crystal order efficiently, even at low 
concentration. There are now several 
experimental studies of the effects of 
various factors on the morphology of the 
networks [ 10-1 21. For example, the 
networks evolve from dilute bead-like 
structures (see figure l(a)) to dense, 
cross-linked fibrillar networks (see figure 
1 (b)) as a function of curing time [12]. To 
date, however, little is understood theo- 
retically about the factors that control the 
morphology of the networks. Under- 
standing these systems is difficult 
because the fabrication of liquid-crystal/ 
polymer dispersions involves several non- 
equilibrium processes. These materials 
are typically made by photopoly- 
merization of monomers dissolved in an 
ordered phase of the liquid crystal 

(continued on page 2) 
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(typically nematic or cholesteric). As the 
polymerization proceeds, the polymer 
tends to phase separate from the liquid 
crystal, forming an isotropic phase rich in 
polymers coexisting with an ordered 
phase rich in liquid crystals. In true 
equilibrium, these two phases would 
separate on a macroscopic scale. Long 
before the system reaches that point, 
however, the polymerization process 
freezes in a cross-linked network of 
polymer-rich domains. A theoretical 
description of this process must therefore 
contain the kinetics of polymerization, 

phase separation and phase ordering. 
This is a formidable task, because the 
three processes are interconnected: for 
example, the polymerization rate de- 
pends on the local concentration, which 
depends on the kinetics of phase 
separation [ 13-1 51. Here I will focus only 
on the interplay of the kinetics of phase 
separation and phase ordering. 

The f i rst  question to ask when 
considering the interplay between phase 
separation and ordering is: when does 
ordering really matter? There are cases 
where orientational order has very little 

effect on domain morphology. For 
example, it is clear that ordering kinetics 
plays almost no role when the starting 
state and ending state are both isotropic. 
Most polymer dispersed liquid crystals 
(PDLCs), which contain a majority of 
polymer, and relatively little (typically 

around 30%) liquid crystal, are systems 
that fall into this category. However, even 
if one of the phases at the end of the 
phase separation process is ordered, the 
morphology may still be insensitive to 
ordering. The relevant question is 
whether the system is initially unstable to 

(continued on page 3) 
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(a) (b) 

Figure I Effect of UV curing time on the morphology of polymer networks in PSLCs These are SEM images of polymer networks that have been 
cured in the cholesteric phase for (a) 5 rnin and (b) 30 min, respectively At the shorter curing time (a), a network composed of strands and beads 
has formed After 30 min of polymerization (b), the network IS much denser and beads are no longer visible Courtesy of I Dierking, L L Kosbar, A 
C Lowe and G A Held, 1121 

phase ordering. As a rough rule of 
thumb, ordering kinetics significantly 
affects domain morphology when the 
starting state is ordered, or when one of 
the final phases is ordered and the 
starting state is unstable to phase 
ordering as well as phase separation. In 
the case of polymer-stabilized systems, 
where the starting state is nematic or 
cholesteric, orientational ordering can 
play an especially significant role in 
morphology development. Experiments 

show that the polymer networks that 
develop in PSLCs at low polymer 
concentrations can be modelled as fibres 
or bundles of fibres that run parallel to 
the nematic director [8-121 (see figure 2). 
At higher polymer concentrations, 
experiments suggest that the morpho- 
logy may be sheet-like [16]. Thus, it 
appears that ordering gives rise to  
anisotropic domain structures. 

There are several factors, both 
thermodynamic and kinetic, that can 

influence domain shape anisotropy. For 
example, the interfacial tension between 
an isotropic and nematic phase is 
anisotropic, so domain shapes tend to  
distort to  lower the surface free energy. 
This thermodynamic effect is largest for 
domains that are comparable to the 
length kly, where y is the interfacial 
tension between the two final phases 
and k is the elastic constant. This length 
scale is often comparable to  the 
characteristic length scale at which 

(a) (b) 
Figure 2 Network morphology for PSLCs cured in the nematic phase These are SEM images of polymer networks formed in (a) the homogeneous 
nematic starting state, and (b) nematic horneotropic state under an applied electric field, with the normal of the substrate tilted a few degrees away 
from the incident electron beam These images show that the fibrils tend to  run parallel to the local nematic director Courtesy of Y K Fung, D K 
Yang, S Ying, L C Chien. S Zumer and J W Doane [S] 
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spinodal decomposition begins. During the later stages of the 
phase separation process, however, the average domain size 
grows with time. Once it becomes large compared to k/y, the 
domains should become more isotropic in shape. This is because 
the interfacial energy dominates the bulk elastic energy in large 
domains. In order to obtain a highly fibrillar morphology, it is 
therefore important to  arrest the phase separation process (e.g. 
by forming a cross-linked network) before the domains grow too 
large. 

At early times following the onset of spinodal decomposition, 
the kinetics can amp/i@ the thermodynamic tendency to  form 
anisotropic domains. The growth rate for the concentration 
difference between the two emerging phases depends 
exponentially on the thermodynamic driving force. This driving 
force is anisotropic. For example, consider the case where the 
liquid crystals prefer parallel anchoring at the polymer interface. 
Suppose we impose a composition perturbation of the form 
sin(q*r) around the starting, uniform state. This perturbation will 
grow most rapidly if q is oriented perpendicular to the director 
n, because the free energy is lower if the liquid crystals orient 
perpendicular to the composition gradients (i.e. parallel to the 
developing interfaces). In other words, the composition 
difference between the developing isotropic, polymer-rich 
regions and nematic, liquid-crystal rich regions will increase most 
rapidly for q perpendicular to the director. This may lead to  fibrils 
or sheets oriented parallel to  the director. Another important 
effect is the anisotropy in the diffusion coefficient: the liquid 
crystal molecules diffuse more rapidly in the direction of the 
director. This also tends to favour anisotropic domains parallel to 
the director. 

Our aim is to capture these effects and study the 
morphological development theoretically. We have constructed a 
framework for studying the kinetics of phase separation into an 
isotropic phase rich in polymer coils and a nematic phase rich in 
rods [20]. In this case, both composition and orientational 
density evolve in a coupled fashion as functions of position and 
time. The order parameters can change with time because of 
diffusive motion. Thus, the composition can change due to 
translational diffusion of rods and coils, and the orientational 
density can change due to translational diffusion of rods and 
coils, or to  rotational diffusion of rods. The standard Cahn- 
Hilliard approach to  study phase separation kinetics alone is to  
construct an equation of motion for the composition order 
parameter of the form [ I  71: 

Model 1 

Here, the composition order parameter Nr,t) is the local 
volume fraction of one of the species, r,, is a mobility 
coefficient that depends on the diffusion coefficients of the two 
species in the mixture, and fl@] is a free energy functional that 
drives the system towards equilibrium. The natural generaliza- 
tion to include the possibility of nematic ordering is to  introduce 
two coupled equations of motion for Nr,t) and the orientational 
density S(r,t): 

aNr,t) - r v2- 6fl4Sl 

Model 2: (2) 
as(rIt) - - r,, cW4.51 

at 65 

This approach has been adopted by Dorgan [I81 and by 
Lansac et a/. [191. Our approach is similar to theirs and differs 
mainly in that we have taken into account the full tensorial 
nature of the orientational density, S(r, t) [20]. The resulting 
equations have the form 

___- 
at @@ 84 

-- 

aNrJ) - r v2 cW@,SI 1 6fl4,SI -- + rq5- 
Model 3: (3) 

at @@ - 64 65'1 

Model 2 is applicable only when the nematic director is 
uniform throughout the sample. For example, it describes 
domain growth in thin samples confined between parallel plates 
that enforce a uniform director field, or in bulk samples under 
strong electric fields. The advantage of Model 3 is that it applies 
to the more general case, where the nematic director can vary in 
space. This is crucial in order to capture anisotropic domain 
growth in bulk samples. In addition, we have used dynamical 
mean field theory to derive Model 3, and therefore are able to 
express all of the mobility coefficients (rqC 5:. r$') in terms of 
single-macromolecule quantities, such as the translational 
diffusion coefficient of the coil, the rotational diffusion 
coefficient of the rod, and the parallel and perpendicular 
translational diffusion coefficients of the rod [20]. Note that we 
also find extra cross terms (proportional to ri5 ) in the equations 
of motion. The mobility coefficients r!5 are non-local and arise 
from the extended shapes of the rods and coils. Similar non-local 
terms appear in equations derived by Shirnada eta/. for the case 
of rod/solvent mixtures [21]. 

The free energy functional fl4, S] in Model 3 controls the 
phase separation kinetics. It has been calculated within mean- 
field theory from microscopic models of rods and coils in terms 
of single-macromolecule quantities such as the molecular 
weights [22]. By varying the molecular weights of the rods and 
coils, Model 3 can be applied to  a variety of systems, ranging 
from small-molecule liquid crystal/flexible polymer mixtures to 
liquid crystalline polymer/solvent mixtures. The model depends 
on only two phenomenological parameters, characterizing the 
strengths of the isotropic and anisotropic interactions, 
respectively; fortunately, these two parameters can be estimated 
from experimental phase diagrams [23]. The free energy can be 
written as the sum of three terms. The first term is the 
Flory-Huggins free energy, which depends only on the volume 
fraction Nr, t), and describes phase separation between two 
polymeric components (in this case, a rodlike species and a 
flexible polymer coil species). The second term is the Landau-de 
Gennes free energy, which describes the isotropidnematic 
transition in terms of the orientational order parameter S(r, r). In 
this case, the coefficients of the Landau expansion are calculated 
functions of the rod length and &r, t); the dependence on Nr, t) 
couples the two order parameters and leads to complex phase 
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diagrams [23]. Finally, the third term in the free energy describes 
the costs of gradients in &r, t) and S(r, t). The gradients have the 
form 

1 1 1 
2 2 2 

Fgra,j = - M(V4)’ - Lod;@jSu + - Ll(dkSu)’+ - L2aiS’kd,5’k (4) 

where the coefficients M, L, are also calculated functions of the 
rod length and ql(r, t). The first term in equation (4) controls the 
cost of spatial gradients in $(r, t). The last two terms determine 
the cost of gradients in the orientational density, and are related 
to the Frank constants. Note that the magnitude of M 
determines the width of the interface preferred by the 
concentration profile; the larger the value of M, the sharper the 
interface. Similarly, L, and L, determine the width of the 
interface preferred by the orientational density. These preferred 
widths can be quite different, depending on the contour lengths 
of the rods and coils, and the interaction parameters. The final 
interfacial width is determined by a compromise between the 
coupled order parameters. Finally, the coefficient Lo couples 
gradients in concentration to gradients in orientational density. 
This term is responsible for the anchoring conditions at the 
interface; rods prefer not to penetrate through the interface into 
the coil-rich phase, so they tend to run along the interface, 
giving rise to parallel orientation at  the interface. This effect has 
been observed even for flexible polymers at  interfaces separating 
two isotropic phases [24], and is stronger at  isotropidnematic 
interfaces [25, 261. 

Models 2 and 3 have been solved analytically at early times 
following a quench into the two-phase region, when the 
composition difference between the two emerging phases is still 
small [ 18-20], The early-time analyses show that there is indeed 
a strong coupling between composition and orientation that can 
lead to faster growth in the direction of the local nematic 
director. At later times, the equations must be treated in their full 
nonlinear form, and can only be solved numerically. Lansac eta/. 
have carried out numerical solutions of Model 2 for a two- 
dimensional system at  late times, for the case where the nematic 
director is uniform and in the plane of study [19]. Their 
calculation would apply to thin samples sandwiched between 
two plates with parallel anchoring surfaces. They do indeed find 
anisotropic domains (see figures 13 and 14 in [ 191); in their case, 
the long-axis of the domains is always parallel to the uniform 
nematic director. 

At this point, it is still unclear whether Model 3 can lead to the 
dramatically fibrillar morphologies observed experimentally. 
Preliminary numerical results show that ordering can lead to 
noticeable changes in domain morphology (271. Figure 3 shows 
the morphology at  two different times following a quench from 
the isotropic mixed state [271. At an intermediate time, the 
domains rich in liquid crystal are circular, with parallel ordering at 
the interface and a defect at  the centre (see figures 3(a) and (b)). 
The degree of ordering inside is extremely weak because the 
concentration of the liquid crystal is not yet high enough. At 
later times, however, the defects are expelled from the domain, 
leaving strong, uniform ordering within elongated domains, and 
very weak ordering at  the two extreme ends (see figures 3(c) and 

different directions; this is possible in Model 3 because we have 
used the tensorial form of S(r, t). The structure is still far from 
being fibrillar as in figure 2, however. If we quench from an 
ordered mixed state, we do find anisotropic structures at  
intermediate times, with fibrils running parallel to the director 

(b) 

Figure 3. 
quench from an isotropic starting state. 
(a) The concentration gr) of liquid crystal molecules at an intermediate 

Numerical solutions of Model 3 in two dimensions for a 

time following the quench. The grey scale ranges from dark to light for 
0.068S~50.677. 
(b) The maqnitude of the orientational density S(r) at the same 
intermediate time; the grey scale ranges from- dark to light for 

(d)). Note that different elongated domains are oriented in 0 ~ ~ 0 . 0 0 8  
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Figure 3 continued 
(c) The concentration dr) at a later time; the grey scale corresponds to 
0.0582@0.776. 
(d) The orientational density S(r) at the same later time; the grey scale 
corresponds to OZ20.02. At intermediate times, ordering does not 
affect domain morphology. At later times, ordering causes domains to 
elongate in the direction of nematic order. 

(see figure 4) but the fibrils tend to break up into elongated 
droplets once the composition difference between the two 
phases becomes appreciable [27]. Perhaps it is necessary to 
include polymerization kinetics in order to reproduce the fibrils 
that are observed experimentally, but much more numerical 
work remains to be done on Model 3 to explore all the factors 
that control morphology. 

Figure 4. Numerical solution of Model 3 for a quench from an ordered 
starting state. The nematic director in the starting state is imposed at 
an angle of 3dl0. The resulting domains at  an intermediate time after 
the quench are fibrillar, oriented along the director. However, the 
composition difference between the two phases is still quite small at 
this stage of the phase separation process; the grey scale ranges from 
0.5892$S0.611. 

The development of polymerAiquid-crystal dispersions for 
applications has raised many fundamental questions that pose 
conceptual and technical challenges to theorists. Even when 
polymerization kinetics are neglected, the interplay of ordering 
kinetics and phase separation kinetics already leads to rich 
phenomena that are not yet fully understood. The hope is that 
fundamental understanding of the factors that control 
morphology development, while interesting in its own right, will 
also lead to enhanced control over the microstructure of these 
dispersions. 
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